bonjours aidez moi d'urgence svp j'ai f(x)=(4x-1)/(x+2) et Un+1=f(Un) et U0=5 demontrer que Un≥ 1 et déterminer la limite de u
Mathématiques
dpan3200
Question
bonjours aidez moi d'urgence svp
j'ai f(x)=(4x-1)/(x+2)
et Un+1=f(Un) et U0=5
demontrer que Un≥ 1 et déterminer la limite de u
j'ai f(x)=(4x-1)/(x+2)
et Un+1=f(Un) et U0=5
demontrer que Un≥ 1 et déterminer la limite de u
1 Réponse
-
1. Réponse laurance
Réponse :
f(x) -1 = (4x- 1 -x-2) / (x+2)= (3x-3) /( x + 2) = 3(x-1) / (x+2)
par récurrence
posons x= un
si x =un≥ 1 alors f(x)-1 = un+1 -1 ≥ 0 donc un+1 ≥1 il y a bien hérédité
et comme u0=5 ≥1 c'est initié donc toujours vrai
la limite est x tel que f(x)=x
4x- 1 = x(x+2) = x² +2x
x² +2x -4x +1=0 x² -2x + 1=0 (x-1)²= 0 x=1